Abstract
Accelerated longitudinal designs (ALDs) are designs in which participants from different cohorts provide repeated measures covering a fraction of the time range of the study. ALDs allow researchers to study developmental processes spanning long periods within a relatively shorter time framework. The common trajectory is studied by aggregating the information provided by the different cohorts. Latent change score (LCS) models provide a powerful analytical framework to analyze data from ALDs. With developmental data, LCS models can be specified using measurement occasion as the time metric. This provides a number of benefits, but has an important limitation: It makes it not possible to characterize the longitudinal changes as a function of a developmental process such as age or biological maturation. To overcome this limitation, we propose an extension of an occasion-based LCS model that includes age differences at the first measurement occasion. We conducted a Monte Carlo study and compared the results of including different transformations of the age variable. Our results indicate that some of the proposed transformations resulted in accurate expectations for the studied process across all the ages in the study, and excellent model fit. We discuss these results and provide the R code for our analysis.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.