Abstract

Abstract. A new nonparametric estimate of a convex regression function is proposed and its stochastic properties are studied. The method starts with an unconstrained estimate of the derivative of the regression function, which is firstly isotonized and then integrated. We prove asymptotic normality of the new estimate and show that it is first order asymptotically equivalent to the initial unconstrained estimate if the regression function is in fact convex. If convexity is not present, the method estimates a convex function whose derivative has the same Lp‐norm as the derivative of the (non‐convex) underlying regression function. The finite sample properties of the new estimate are investigated by means of a simulation study and it is compared with a least squares approach of convex estimation. The application of the new method is demonstrated in two data examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.