Abstract

In this paper we consider a competing risks model including covariates in which the observations are subject to random right censoring. Without any assumption of inde- pendence of the competing risks, and based on a nonparametric kernel-type estimator of the incident regression function, an estimator of the conditional regression function is proposed. We show that at a given covariate value and under suitable conditions the nonparametric estimator of the regression function is asymptotically normal. A simulation study is provided showing that our estimators have good behaviour for moderate sample sizes. R esum

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.