Abstract

We propose an estimator of change point in the long memory parameter d of an ARFIMA(p, d, q) process using the sup Wald test. We derive the consistency and the rate of convergence of the estimator for the time of change. The convergence rate of our change point estimator depends on the magnitude of a shift. Furthermore, we obtain the limiting distribution of our change point estimator without depending on the distribution of the process. Therefore, we can construct confidence intervals for the change point. Simulations show the validity of the asymptotic theory of our estimator if the sample size is large enough. We apply our change point estimator to the yearly Nile river minimum water level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.