Abstract

The assessment of dose and ultimately the health risk from intakes of radioactive materials begins with estimating the amount actually taken into the body. An accurate estimate provides the basis to best assess the distribution in the body, the resulting dose and ultimately the health risk. This study continues the time-honoured practice of evaluating the accuracy of results obtained using in vivo measurement methods and techniques. Results from the radiochemical analyses of the (241)Am activity content of tissues and organs from four donors to the United States Transuranium and Uranium Registries (USTUR) were compared with the results from direct measurements of radioactive material in the body performed in vivo and post-mortem. Two were whole-body donations and two were partial-body donations. The (241)Am lung activity estimates ranged from 1 to 30 Bq in the four cases. The (241)Am activity in the lungs determined from the direct measurements were within 40% of the radiochemistry results in three cases and within a factor of 2 for the other case. However, in one case the post-mortem direct measurement estimate was a factor of 10 higher than the radiochemistry result for lung activity, most probably due to underestimating the skeletal contribution to the measured count rate over the lungs. The direct measurement estimates of liver activity ranged from 2 to 60 Bq and were consistently lower than the radiochemistry results. The skeleton was the organ with the highest deposition of (241)Am activity in all four cases. The skeletal activity estimates ranged from 30 to 300 Bq. The skeletal activity obtained from measurements over the forehead were within 20% of the radiochemistry results in three cases and differed by 78% in the other case. The results from this study suggest that the measurement methods, data analysis methods and calibration techniques used at the In Vivo Radiobioassay and Research Facility can be used to quantify the activity in the lungs, skeleton and liver when (241)Am activity is present in all three organs. The adjustment method used to account for the contribution from activity in other organs improved the agreement between the direct measurement results and the radiochemistry results for activity in the lungs and skeleton. The method appeared to overestimate the contribution from the other organs to the liver activity measurements, although the low activity levels complicated the analysis. The unadjusted liver activity estimates from the direct measurements were generally in better agreement with the radiochemistry results than the adjusted liver activity. The data from this study indicates that the results from the in vivo measurement techniques provide reasonable estimates of radioactive material in the lungs and skeleton under the most challenging conditions where there is (241)Am activity in multiple organs. The data analysis from additional USTUR cases with both direct measurement results and radiochemistry results is in progress to further evaluate how best to account for the contributions from (241)Am activity in multiple organs and to better understand the uncertainty associated with the adjusted activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.