Abstract

We obtain infinite-dimensional corollaries of our recent results. We show that the finite-dimensional results imply meaningful estimates for the accuracy of strong Gaussian approximation of sums of independent identically distributed Hilbert space-valued random vectors with finite power moments. We establish that the accuracy of approximation depends substantially on the decay rate of the sequence of eigenvalues of the covariance operator of the summands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.