Abstract
In this paper we consider a complete connected noncompact Riemannian manifold M with Ricci curvature bounded from below and positive injectivity radius. Denote by L the Laplace-Beltrami operator on M. We assume that the kernel associated to the heat semigroup generated by L satisfies a mild decay condition at infinity. We prove that if m is a bounded holomorphic function in a suitable strip of the complex plane, and satisfies Mihlin-Hormander type conditions of appropriate order at infinity, then the operator m(L) extends to an operator of weak type 1. This partially extends a celebrated result of J. Cheeger, M. Gromov and M. Taylor, who proved similar results under much stronger curvature assumptions on M, but without any assumption on the decay of the heat kernel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.