Abstract

trans-fatty acids (TFAs) are a well-known risk factor of ischemic heart disease (IHD). In Australia, the highest TFA intake is concentrated to the most socioeconomically disadvantaged groups. Elimination of industrial TFA (iTFA) from the Australian food supply could result in reduced IHD mortality and morbidity while improving health equity. However, such legislation could lead to additional costs for both government and food industry. Thus, we assessed the potential cost-effectiveness, health gains, and effects on health equality of an iTFA ban from the Australian food supply. Markov cohort models were used to estimate the impact on IHD burden and health equity, as well as the cost-effectiveness of a national ban of iTFA in Australia. Intake of TFA was assessed using the 2011-2012 Australian National Nutrition and Physical Activity Survey. The IHD burden attributable to TFA was calculated by comparing the current level of TFA intake to a counterfactual setting where consumption was lowered to a theoretical minimum distribution with a mean of 0.5% energy per day (corresponding to TFA intake only from nonindustrial sources, e.g., dairy foods). Policy costs, avoided IHD events and deaths, health-adjusted life years (HALYs) gained, and changes in IHD-related healthcare costs saved were estimated over 10 years and lifetime of the adult Australian population. Cost-effectiveness was assessed by calculation of incremental cost-effectiveness ratios (ICERs) using net policy cost and HALYs gained. Health benefits and healthcare cost changes were also assessed in subgroups based on socioeconomic status, defined by Socio-Economic Indexes for Areas (SEIFA) quintile, and remoteness. Compared to a base case of no ban and current TFA intakes, elimination of iTFA was estimated to prevent 2,294 (95% uncertainty interval [UI]: 1,765; 2,851) IHD deaths and 9,931 (95% UI: 8,429; 11,532) IHD events over the first 10 years. The greatest health benefits were accrued to the most socioeconomically disadvantaged quintiles and among Australians living outside of major cities. The intervention was estimated to be cost saving (net cost <0 AUD) or cost-effective (i.e., ICER < AUD 169,361/HALY) regardless of the time horizon, with ICERs of 1,073 (95% UI: dominant; 3,503) and 1,956 (95% UI: 1,010; 2,750) AUD/HALY over 10 years and lifetime, respectively. Findings were robust across several sensitivity analyses. Key limitations of the study include the lack of recent data of TFA intake and the small sample sizes used to estimate intakes in subgroups. As with all simulation models, our study does not prove that a ban of iTFA will prevent IHD, rather, it provides the best quantitative estimates and corresponding uncertainty of a potential effect in the absence of stronger direct evidence. Our model estimates that a ban of iTFAs could avert substantial numbers of IHD events and deaths in Australia and would likely be a highly cost-effective strategy to reduce social-economic and urban-rural inequalities in health. These findings suggest that elimination of iTFA can cost-effectively improve health and health equality even in countries with low iTFA intake.

Highlights

  • Ischemic heart disease (IHD) is the single most common cause of death in Australia, contributing to 12% of all deaths in 2016 [1]

  • Markov cohort models were used to estimate the impact on IHD burden and health equity, as well as the cost-effectiveness of a national ban of industrial-derived trans-fatty acids (TFAs) (iTFA) in Australia

  • Our model estimates that a ban of iTFAs could avert substantial numbers of IHD events and deaths in Australia and would likely be a highly cost-effective strategy to reduce social–economic and urban–rural inequalities in health

Read more

Summary

Introduction

Ischemic heart disease (IHD) is the single most common cause of death in Australia, contributing to 12% of all deaths in 2016 [1]. TFAs occur naturally at low levels in meat and milk from ruminants, but in most countries, intakes are predominantly driven by the use of partially hydrogenated vegetable oils in processed foods such as pastries [4]. Given the adverse effects of TFAs, the World Health Organization (WHO) recommends limiting TFA intake to 1 energy percent (%E), and countries have implemented strategies to reduce industrial-derived TFA (iTFA) in the food supply such as partially hydrogenated vegetable oils [5,6]. These policies range from voluntary reformulation, mandatory labelling, through to banning iTFA entirely. Our prior modelling suggests that at a current level of intake, TFA continues to contribute to around 500 deaths per year in Australia, with the majority of these expected to accrue to those with less education and income [12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call