Abstract
ABSTRACT Multicollinearity is one of the assumption violations in regression analysis. The existence of multicollinearity causes the standard error to increase. Ridge regression is one of the regression analysis approaches that can overcome this problem. Besides multicollinearity, another problem that often occurs is outliers. The existence of outliers causes the data not to be normally distributed. Ridge Robust Least Trimmed Square Regression is a method that can be used to overcome multicollinearity and outlier problems in the data simultaneously in the regression analysis model. The purpose of this study was to obtain the estimation results of the least trimmed square ridge robust regression model on the Health Profile data of South Sulawesi in 2017. From the results and discussion it was found that the least trimmed square ridge robust regression method has an Rsquare value or ?2 which is 88% and an MSE value 1.96, thus indicating that the ridge robust least trimmed square model fits better in dealing with data containing multicollinearity and outliers. Keywords: Robust Ridge Regression, Least Trimmed Square, Multicollinearity, Outlier, Infant Mortality Rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESTIMASI: Journal of Statistics and Its Application
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.