Abstract

Enzyme-responsive drug delivery systems have drawn much attention in the field of cancer theranostics due to their high sensitivity and substrate specificity under mild conditions. In this study, an amphiphilic polymer T1 is reported, which contains a tetraphenylethene unit and a poly(ethylene glycol) chain linked by an esterase-responsive phenolic ester bond. In aqueous solution, T1 formed stable micelles via self-assembly, which showed an aggregation-induced emission enhancement of 32-fold at 532 nm and a critical micelle concentration of 0.53 μM as well as esterase-responsive activity. The hydrophobic drug doxorubicin (DOX) was efficiently encapsulated into the micelles with a drug loading of 21%. In the presence of the esterase, the selective decomposition of drug-loaded T1 micelles was observed, and DOX was subsequently released with a half-life of 5 h. In vitro antitumor studies showed that T1@DOX micelles exhibited good therapeutic effects on HeLa cells, while normal cells remained mostly intact. In vivo anticancer experiments revealed that T1@DOX micelles indeed suppressed tumor growth and had reduced side effects compared to DOX·HCl. The present work showed the potential clinical application of esterase-responsive drug delivery in cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.