Abstract

Within multi-male and multi-female mammalian societies, paternity assignment is crucial for evaluating male reproductive success, dominance hierarchy, and inbreeding avoidance. It is, however, difficult to determine paternity because of female promiscuity during reproduction. Noninvasive molecular techniques (e.g., fecal DNA) make it possible to match the genetic father to his offspring. In the current study, a troop of free-ranging Taihangshan macaques (Macaca mulatta tcheliensis) in Mt. Taihangshan area, Jiyuan, China, was selected for studying the paternity. We successfully screened a set of microsatellite loci from fecal DNA and evaluated the efficiency of these loci for paternity testing using clearly recorded data of maternity. The results showed that: 1) ten loci out of 18 candidate microsatellite loci were amplified successfully in the fecal samples of Taihangshan macaques. The error probability in maternity assignments and paternity testing was very low as indicated by their power of discrimination (0.70 to 0.95), power of exclusion (0.43 to 0.84), and the values of polymorphic information content ranging from 0.52 to 0.82; 2) the combined probability of exclusion in paternity testing for ten qualified loci was as high as 99.999%, and the combined probability of exclusion reached 99.99% when the seven most polymorphic loci were adopted; 3) the offspring were assigned to their biological mother correctly and also matched with their genetic father. We concluded that the ten polymorphic microsatellite loci, especially a core set of seven most polymorphic loci, provided an effective and reliable tool for noninvasive paternity testing in free-ranging rhesus macaques.

Highlights

  • Within multi-male and multi-female mammalian societies, paternity assignment is crucial for evaluating male reproductive success, dominance hierarchy, and inbreeding avoidance

  • Ten out of these 18 candidate microsatellite loci were successfully amplified, while the remaining 8 loci were discarded because of their poor amplification. Within this set of ten loci, the average success rate of amplification with fecal DNA of Taihangshan macaques was 64.20% (763 attempts) and the success rate ranged from 35.63% for locus D16S403 (31/87 attempts) to 85.71% (84/98 attempts) for locus D5S820 (Table 2)

  • The distribution of alleles at D16S403 was found to deviate from the Hardy-Weinberg expectations (P < 0.001), while all other loci conformed to expectations (Table 4)

Read more

Summary

Introduction

Within multi-male and multi-female mammalian societies, paternity assignment is crucial for evaluating male reproductive success, dominance hierarchy, and inbreeding avoidance. It is, difficult to determine paternity because of female promiscuity during reproduction. Within multi-male and multi-female mammalian societies, maternal rather than paternal care plays a crucial role in offspring development (Rosenblatt 2003). Advancing molecular techniques (e.g., noninvasive genotyping) help to overcome many limitations in the field and broaden the scope of studies of free-ranging non-human primates, including paternity determination (Woodruff 1993, Constable et al 2001, Taberlet et al 1999)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call