Abstract

Translesion DNA synthesis (TLS) is a tolerance pathway of replication block caused by DNA lesions. To measure the efficiency and fidelity of TLS in human cells, we established a shuttle vector assay by modifying of a bacterial TLS assay system. The assay consists of transfection of DNA repair-deficient human cells with a plasmid possessing a single DNA adduct, and transformation of indicator bacteria with plasmids extracted from the cells. We show that plasmid replication was suppressed to 1/9 by a single aminobiphenyl-dG adduct, and the mutant frequency of TLS-operated plasmids was 0.31, of which the major mutation (78%) was G to T transversion. The results demonstrate that this assay is applicable in practice for investigating TLS in human cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.