Abstract
ABSTRACT Objectives To evaluate the prognostic effect of pre-treatment factors in patients with spinal metastases secondary to lung cancer, and establish a novel predicting nomogram for predicting the survival probability. Methods A total of 209 patients operated for spinal metastases from lung cancer were consecutively enrolled, and divided into the training and validation samples with a ratio of 7:3, for model establishing and validating, respectively. Basing on the training sample, univariate and multivariate COX proportional hazard models were used for identifying the prognostic effect of pre-treatment factors, following which significant prognostic factors would be listed as items in nomogram to calculate the survival probabilities at 3, 6, 12 and 18 months. Then, the C-indexes and the calibration curves would be figured out to evaluate the discrimination ability and accuracy of the model both for the training and validation samples. Results In the multivariate COX analysis, the gender, smoking history, location of spinal metastasis, visceral metastasis, Karnofsky performance status (KPS), adjuvant therapy, lymphocyte percentage and globulin were found to be significantly associated with the overall survival, and a novel nomogram was generated basing on these independent predictors. The C-indexes for the training and validation samples were 0.761 and 0.732, respectively. Favorable consistencies between the predicted and actual survival rates were demonstrated both in the internal and external validations. Discussion Pre-treatment characteristics, including gender, smoking history, location of spinal metastasis, visceral metastasis, KPS, adjuvant therapy, percentage of lymphocyte, and serum globulin level, were identified to be significantly associated with overall survival of patients living with spinal metastases derived from lung cancer, and a user-friendly nomogram was established using these independent predictors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.