Abstract

Organoids play pivotal roles in uncovering the molecular mechanisms underlying organogenesis, intercellular communication, and high-throughput drug screening. Testicular organoids are essential for exploring the genetic and epigenetic regulation of spermatogenesis in vivo and the treatment of male infertility. However, the formation of testicular organoids with full spermatogenesis has not yet been achieved. In this study, neonatal mouse testicular cells were isolated by two-step enzymatic digestion, and they were combined with Matrigel and transplanted subcutaneously into nude mice. Histological examination (H&E) staining and immunohistochemistry revealed that cell grafts assembled to form seminiferous tubules that contained spermatogonial stem cells (SSCs) and Sertoli cells, as illustrated by the co-expression of PLZF (a hallmark for SSCs) and SOX9 (a marker for Sertoli cells) as well as the co-expression of UCHL1 (a hallmark for SSCs) and SOX9, after 8 weeks of transplantation. At 10 weeks of transplantation, SSCs could proliferate and differentiate into spermatocytes as evidenced by the expression of PCNA, Ki67, c-Kit, SYCP3, γ-HA2X, and MLH1. Notably, testicular organoids were seen, and spermatids were observed within the lumen of testicular organoids after 16 weeks of transplantation, as shown by the presence of TNP1 and ACROSIN (hallmarks for spermatids). Collectively, these results implicate that we successfully established testicular organoids with spermatogenesis in vivo. This study thus provides an excellent platform for unveiling the mechanisms underlying mammalian spermatogenesis, and it might offer valuable male gametes for treating male infertility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.