Abstract

Duck plague is an acute, febrile, and septic infectious disease caused by duck plague virus (DPV), which causes serious harm to the duck industry in China. Ducks latently infected with DPV display a clinically healthy state, which is one of the epidemiological characteristics of duck plague. In the present study, to rapidly distinguish vaccine-immunized ducks from wild virus-infected ducks during production, a PCR assay based on the newly identified LORF5 fragment was developed to effectively and accurately identify viral DNA in cotton swab samples and was used to assess artificial infection models and clinical samples. The results showed that the established PCR method had good specificity and that only the virulent and attenuated DNA of duck plague virus was specifically amplified, as the results for the detection of common duck pathogens (duck hepatitis B virus, duck Tembusu virus, duck hepatitis A virus type 1, novel duck reovirus, Riemerella anatipestifer, Pasteurella multocida, and Salmonella) were negative. The amplified fragments of virulent and attenuated strains were 2,454 bp and 525 bp, and their minimum detection amounts were 0.46 pg and 46 pg, respectively. The detection rate of the virulent and attenuated DPV strains in duck oral and cloacal swabs was lower than that of the gold standard PCR method (GB-PCR, which is unable to distinguish virulent and attenuated strains), and cloacal swabs from clinically healthy ducks were more suitable for detection than oral swabs. In conclusion, the PCR assay established in the present study can be used as a simple and effective method for the clinical screening of ducks that are latently infected with virulent strains of DPV and shedding virus, which can provide technical support for the elimination of duck plague from duck farms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call