Abstract

Skeletal muscle satellite cells are stem cells that are known for their multipotency and ability to proliferate in vitro. However, primary skeletal muscle satellite cells have limited proliferative capacity in vitro, which hinders their study in poultry skeletal muscle. The emergence of immortalization techniques for cells has provided a useful tool to overcome this limitation and explore the functions of skeletal muscle satellite cells. In this study, we achieved the immortalization of chicken skeletal muscle satellite cells by transducing primary cells with TERT (Telomerase reverse transcriptase) amplified from chicken (chTERT) using a lentiviral vector through reconstitution of telomerase activity. The cells successfully bypassed replicative senescence but did not achieve true immortalization. Preliminary functional characterization of the established cell line revealed that the proliferative characteristics and cell cycle profile of the immortalized chicken skeletal muscle satellite cell lines (ICMS) were similar to those of chicken primary muscle satellite cells (CPMSCs). Serum dependency analysis and soft agar assays indicated that ICMS did not undergo malignant transformation. Induced differentiation results demonstrated that ICMS retained their capacity for differentiation. The cell lines established in this study provide an important basis for the establishment of immortalized poultry cell lines and a cell model for the study of poultry skeletal muscle-related functional genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.