Abstract
The adsorption isotherms of allspice essential oil microencapsulated in biopolymers blend (whey protein concentrate [WPC], mesquite gum [MG], and maltodextrin DE10 [MD]) in different proportions (WPC17%-MG17%-MD66% w/w and WPC66%-MG17%-MD17% w/w) with wall-to-core material ratios of 4:1 were determined at 25, 35, and 40°C. The isotherms were fitted using the Guggenheim-Anderson-de Boer (GAB) model and the enthalpies and entropies, both differential and integral, were estimated by the Clausius-Clapeyron method. The minimum integral entropy was considered as the point of maximum stability where strong bonds between the adsorbate and adsorbent occurred, and water would be less available and likely to participate in spoilage reactions. The point of maximum stability was found between 13.79 and 15.11 kg H2O/100 kg d.s. (corresponding to water activity, a W , of 0.444–0.551) for the microcapsules with WPC17%-MG17%-MD66% w/w as wall material and 18.71–19.63 kg H2O/100 kg d.s. (a W = 0.591–0.713) for the microcapsules with WPC66%-MG17%-MD17% w/w as wall material in the temperature range studied.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have