Abstract
The analysis of trace DNA is a crucial component in forensic applications. Biological materials containing low-level DNA collected at crime scenes, such as fingerprints, can be valuable as evidence. Automatic detection of biological samples has been largely embraced in forensic applications to meet the increasing throughput requirements. However, the amount of DNA automatically retrieved from trace evidence often tends to be small and unstable, ultimately resulting in poor detection of DNA profiles. Thus, in this work, we introduced a robust DNA extraction and purification platform named Bionewtech® BN3200 (Bionewtech®, Shanghai, China) with the goal of constructing a rapid automatic detection system for trace DNA. The establishment of automatic detection system for trace DNA mainly encompassed two parts: assessing the sensitivity of automatic extraction platform and screening the optimal short tandem repeat (STR) typing kit. The sensitivity of Bionewtech® BN3200 platform based on Ultra-sensitive DNA Extraction kit was initially estimated, demonstrating that this extraction platform might contain large potential in the trace DNA extraction. For the amplification part, three sets of commercial multiplex STR typing kits were selected as candidates, and the amplified products were further genotyped on the Applied Biosystems 3500xl Genetic Analyzer. After comparation, SiFa™ 23 Plex Kit was determined as the most suitable amplification system for trace DNA. Eventually, the newly exploited trace DNA detection system was successfully implemented in the detection of fingerprints derived from glass surfaces with the five-seconds contact time. As a result, the DNA recovered from the fingerprints fluctuated approximately from 57.60 pg to 18.05 ng, in addition, over 70% of the total STR loci were detected in 75% of the fingerprint samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.