Abstract
Every engineering project involving the design of pressure equipment, including pressure vessels, heat exchangers and the interconnecting piping requires that the interface loads between the equipment and piping be established for the pressure vessel nozzle design and the limitations on piping end reactions. The vessel or exchanger designer needs to know the external applied loads on nozzles and the piping designer needs to know the limiting end reactions on any connected equipment. However, the final loads are not known until the piping design is completed. This requires a very good estimate of the piping end loads prior to completing the vessel or piping design. The challenge is to develop a method of determining the optimum set of design loads prior to design. If the design loads are too low, the piping design may become too costly or impractical. If the design loads are too high the vessel nozzle designs will require unnecessary reinforcement and increased cost. The problem of the stresses at a nozzle to vessel intersection due to internal pressure and external forces and moments is one of the most complex problems in pressure vessel design. The problem has been studied extensively; however each study has its own limitations. Numerous analytical and numerical simulations have been performed providing guidance with associated limitations. The objective is to establish allowable nozzle load tables for the piping designer and the vessel designer. The loads and load combinations must be based on a technically accepted methodology and applicable to all nozzle sizes, pressure classes, schedules and vessel diameters and thicknesses and reinforcement designs within the scope of the tables. The internal design pressure must also be included along with the 3 forces and 3 moments that may be acting on the nozzle and the nozzle load tables must be adaptable to all materials of construction. The Tables must also be applicable for vessel heads. This paper presents the issues, including the limitations of some of the existing industry approaches, presents an approach to the problem, utilizing systematic Finite Element Analysis (FEA) methods and presents the results in the form of tables of allowable nozzle loads.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have