Abstract
Genetic studies have established that the cysteine protease CED-3 plays a central role in coordinating programmed cell death in Caenorhabditis elegans. However, it remains unclear how CED-3 activation results in cell death because few substrates for this protease have been described. We have used a global proteomics approach to seek substrates for CED-3 and have identified 22 worm proteins that undergo CED-3-dependent proteolysis. Proteins that were found to be substrates for CED-3 included the cytoskeleton proteins actin, myosin light chain, and tubulin, as well as proteins involved in ATP synthesis, cellular metabolism, and chaperone function. We estimate that approximately 3% of the C. elegans proteome is susceptible to CED-3-dependent proteolysis. Notably, the endoplasmic reticulum chaperone calreticulin, which has been implicated in the recognition of apoptotic cells by phagocytes, was cleaved by CED-3 and was also cleaved by human caspases during apoptosis. Inhibitors of caspase activity blocked the appearance of calreticulin on the surface of apoptotic cells, suggesting a mechanism for the surface display of calreticulin during apoptosis. Further analysis of these substrates is likely to yield important insights into the mechanism of killing by CED-3 and its human caspase counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.