Abstract

Pseudotaxus chienii, belonging to the monotypic genus Pseudotaxus (Taxaceae), is a relict conifer endemic to China. Its populations are usually small and patchily distributed, having a low capacity of natural regeneration. To gain a clearer understanding of how landscape variables affect the local adaptation of P. chienii, we applied EST‐SSR markers in conjunction with landscape genetics methods: (a) to examine the population genetic pattern and spatial genetic structure; (b) to perform genome scan and selection scan to identify outlier loci and the associated landscape variables; and (c) to model the ecological niche under climate change. As a result, P. chienii was found to have a moderate level of genetic variation and a high level of genetic differentiation. Its populations displayed a significant positive relationship between the genetic and geographical distance (i.e., “isolation by distance” pattern) and a strong fine‐scale spatial genetic structure within 2 km. A putatively adaptive locus EMS6 (functionally annotated to cellulose synthase A catalytic subunit 7) was identified, which was found significantly associated with soil Cu, K, and Pb content and the combined effects of temperature and precipitation. Moreover, P. chienii was predicted to experience significant range contractions in future climate change scenarios. Our results highlight the potential of specific soil metal content and climate variables as the driving force of adaptive genetic differentiation in P. chienii. The data would also be useful to develop a conservation action plan for P. chienii.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.