Abstract
An essentially nonlinear piezoelectric shunt circuit is proposed for the practical realization of nonlinear energy sink, and then applied to a mistuned bladed disk for blade vibration reduction. First, the global dynamics of a single degree-of-freedom linear mechanical oscillator, coupled to an essentially nonlinear shunted piezoelectric attachment, is studied. Under certain conditions, the nonlinear targeted energy transfer, i.e. a fast, passive energy transfer from the mechanical oscillator to the nonlinear attachment is observed. A numerical method, referred to as the variable-coefficient harmonic balance method, is developed to calculate quasi-periodic responses arising in the electromechanical system under harmonic forcing. Characterized by the nonexistence of a resonance frequency, the essentially nonlinear shunt circuit is able to work robustly over a broad frequency band with a smaller inductance requirement compared with the linear resonant shunt circuit. The application of piezoelectric shunt damping to simplified blade–disk structures is then taken into consideration. Shunted piezoelectrics are attached onto the disk surface in our damping strategy in order to reduce blade vibrations. Essential nonlinearity is also introduced into the piezoelectric shunted bladed disk system. Since the piezoelectric-based nonlinear energy sink is not a priori tuned to any specific frequency, a sound damping performance is achieved when blades become inevitably mistuned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.