Abstract

Let $X=\mathbb{R}\times M$ be the spacetime, where $M$ is a closed manifold equipped with a Riemannian metric $g$, and we consider a symmetric Klein-Gordon type operator $P$ on $X$, which is asymptotically converges to $\partial_t^2-\triangle_g$ as $|t|\to\infty$, where $\triangle_g$ is the Laplace-Beltrami operator on $M$. We prove the essential self-adjointness of $P$ on $C_0^\infty(X)$. The idea of the proof is closely related to a recent paper by the authors on the essential self-adjointness for Klein-Gordon operators on asymptotically flat spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.