Abstract

Autophagic cell death is characterized by the accumulation of vacuoles in physiological and pathological conditions. However, its molecular event is unknown. Here, we show that Atg5, which is known to function in autophagy, contributes to autophagic cell death by interacting with Fas-associated protein with death domain (FADD). Down-regulation of Atg5 expression in HeLa cells suppresses cell death and vacuole formation induced by IFN-gamma. Inversely, ectopic expression of Atg5 using adenoviral delivery induces autophagic cell death. Deletion mapping analysis indicates that procell death activity resides in the middle and C-terminal region of Atg5. Cells harboring the accumulated vacuoles triggered by IFN-gamma or Atg5 expression become dead, and vacuole formation precedes cell death. 3-Methyladenine or expression of Atg5(K130R) mutant blocks both cell death and vacuole formation triggered by IFN-gamma, whereas benzyloxycarbonyl-VAD-fluoromethyl ketone (Z-VAD-fmk) inhibits only cell death but not vacuole formation. Atg5 interacts with FADD via death domain in vitro and in vivo, and the Atg5-mediated cell death, but not vacuole formation, is blocked in FADD-deficient cells. These results suggest that Atg5 plays a crucial role in IFN-gamma-induced autophagic cell death by interacting with FADD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.