Abstract
Notch/Hes1 signaling has been shown to play a role in determining the fate of pancreatic progenitor cells. However, its function in postnatal pancreatic maturation is not fully elucidated. We generated conditional Hes1 knockout and/or Notch intracellular domain (NICD) overexpression mice in Ptf1a- or Pdx1-positive pancreatic progenitor cells and analyzed pancreatic tissues. Both Ptf1acre/+; Hes1f/f and Ptf1acre/+; Rosa26NICD mice showed normal pancreatic development at P0. However, exocrine tissue of the pancreatic tail in Ptf1acre/+; Hes1f/f mice atrophied and was replaced by fat tissue by 4weeks of age, with increased apoptotic cells and fewer centroacinar cells. This impaired exocrine development was completely rescued by NICD overexpression in Ptf1acre/+; Hes1f/f; Rosa26NICD mice, suggesting compensation by a Notch signaling pathway other than Hes1. Conversely, Pdx1-Cre; Hes1f/f mice showed impaired postnatal exocrine development in both the pancreatic head and tail, revealing that the timing and distribution of embryonic Hes1 expression affects postnatal exocrine tissue development. Notch signaling has an essential role in pancreatic progenitor cells for the postnatal maturation of exocrine tissue, partly through the formation of centroacinar cells.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have