Abstract

The control of storage insect pests is largely based on synthetic pesticides. However, due to fast growing resistance in the targeted insects, negative impact on humans and non-target organisms as well as the environment, there is an urgent need to search some safer alternatives of these xenobiotics. Many essential oils (EOs) and their bioactive compounds have received particular attention for application as botanical pesticides, since they exhibited high insecticidal efficacy, diverse mode of action, and favourable safety profiles on mammalian system as well as to the non-target organisms. Data collected from scientific articles show that these EOs and their bioactive compounds exhibited insecticidal activity via fumigant, contact, repellent, antifeedant, ovicidal, oviposition deterrent and larvicidal activity, and by inhibiting/altering important neurotransmitters such as acetylcholine esterase (AChE) and octopamine or neurotransmitter inhibitor γ-amino butyric acid (GABA), as well as by altering the enzymatic [superoxide dismutase (SOD), catalase (CAT), peroxidases (POx), glutathione-S-transferase (GST) and glutathione reductase (GR)] and non-enzymatic [glutathione (GSH)] antioxidant defence systems. However, in spite of promising pesticidal efficacy against storage pests, the practical application of EOs and their bioactive compounds in real food systems remain rather limited because of their high volatility, poor water solubility and susceptibility towards degradation. Nanoencapsulation/nanoemulsion of EOs is currently considered as a promising tool that improved water solubility, enhanced bio-efficacy, stability and controlled release, thereby expanding their applicability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call