Abstract
Eshelby tensors for an ellipsoidal inclusion in a microstretch material are derived in analytical form, involving only one-dimensional integral. As micropolar Eshelby tensor, the microstretch Eshelby tensors are not uniform inside of the ellipsoidal inclusion. However, different from micropolar Eshelby tensor, it is found that when the size of inclusion is large compared to the characteristic length of microstretch material, the microstretch Eshelby tensor cannot be reduced to the corresponding classical one. The reason for this is analyzed in details. It is found that under a pure hydrostatic loading, the bulk modulus of a microstretch material is not the same as the one in the corresponding classical material. A modified bulk modulus for the microstretch material is proposed, the microstretch Eshelby tensor is shown to be reduced to the modified classical Eshelby tensor at large size limit of inclusion. The fully analytical expressions of microstretch Eshelby tensors for a cylindrical inclusion are also derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.