Abstract

E26 transformation-specific (Ets) family of transcription factors are characterized by the presence of Ets-DNA binding domain and have been found to be highly involved in hematopoiesis and various tissue differentiation. ESE-1, or Elf3 in mice, is a member of epithelium-specific Ets sub-family which is most prominently expressed in epithelial tissues such as the gut, mammary gland, and lung. The role of ESE-1 during embryogenesis had long been alluded from 30% fetal lethality in homozygous knockout mice and its high expression in preimplantation mouse embryos, but there has been no in-depth of analysis of ESE-1 function in early development. With improved proteomics, gene editing tools and increasing knowledge of ESE-1 function in adult tissues, we hereby propose future research directions for the study of ESE-1 in embryogenesis, including studying its regulation at the protein level and at the protein family level, as well as better defining the developmental phase under investigation. Understanding the role of ESE-1 in early development will provide new insights into its involvement in tissue regeneration and cancer, as well as how it functions with other Ets factors as a protein family.

Highlights

  • E26 transformation-specific (Ets) transcription factors are characterized by the presence of conserved Ets-DNA binding domain which recognizes a core sequence of GGAA/T, consisting a protein family of at least 27 members in human and 26 in mice (Bult et al, 2008; Hollenhorst et al, 2011)

  • Ets factors have been divided into four sub-groups by difference in preferred Ets-binding motifs, which were determined by variations in amino-acids that interact with the backbone of the core recognition sequence (Wei et al, 2010)

  • More holistic approaches are required to understand the interplay of Ets factors during early development. In this Perspective, we focus on a well-characterized member of a subfamily of Ets factors called ESE-1, or Epithelium-specific Ets transcription factor 1, to provide an overall direction of future research on ESE-1 and other Ets factors in fetal development

Read more

Summary

Frontiers in Cell and Developmental Biology

ESE-1 in Early Development: Approaches for the Future. Front. ESE-1, or Elf in mice, is a member of epithelium-specific Ets sub-family which is most prominently expressed in epithelial tissues such as the gut, mammary gland, and lung. The role of ESE-1 during embryogenesis had long been alluded from 30% fetal lethality in homozygous knockout mice and its high expression in preimplantation mouse embryos, but there has been no in-depth of analysis of ESE-1 function in early development. Gene editing tools and increasing knowledge of ESE-1 function in adult tissues, we hereby propose future research directions for the study of ESE-1 in embryogenesis, including studying its regulation at the protein level and at the protein family level, as well as better defining the developmental phase under investigation. Understanding the role of ESE-1 in early development will provide new insights into its involvement in tissue regeneration and cancer, as well as how it functions with other Ets factors as a protein family

INTRODUCTION
BUILDING AN OVERALL PICTURE AND APPROACHES FOR THE FUTURE
Better Definition of the Physiological Context
CONCLUDING REMARKS
Findings
AUTHOR CONTRIBUTIONS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call