Abstract

Inflammation, extracellular matrix metabolic dysfunction, and oxidative stress are key pathogenic characteristics of intervertebral disk degeneration (IVDD), a major pathogenic cause of low back pain. Esculetin possesses anti-injury, anti-inflammation, and antinociceptive properties. This study aimed to explore its role in IVDD. In this research, esculetin exhibited little cytotoxicity to human nucleus pulposus cells (NPCs). Moreover, esculetin increased cell viability under IL-1β stimulation but attenuated IL-1β-induced cell apoptosis and caspase-3 activity. Furthermore, IL-1β-evoked increases in intracellular reactive oxygen species and malondialdehyde (MDA) levels, and decreases in superoxide dismutase (SOD) activity were reversed after esculetin treatment, indicating the antioxidative stress efficacy of esculetin. Esculetin alleviated the inhibitory effects of IL-1β on the transcription and protein expression of anabolic biomarkers (collagen II and aggrecan), accompanied by decreases in expression and release of catabolic biomarkers MMP-3 and MMP-13 from NPCs. Moreover, IL-1β exposure enhanced the expression levels of the inflammatory mediator nitric oxide and inflammatory cytokine IL-6 and TNF-α, which were overturned after esculetin treatment. Additionally, esculetin activated the nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) to inhibit the activation of nuclear factor κB (NF-κB) signaling in NPCs. Importantly, suppression of Nrf2 signaling reversed the protective efficacy of esculetin against IL-1β-mediated oxidative injury, matrix metabolism disruption, and inflammatory response in NPCs. Together, esculetin may alleviate IL-1β-induced dysfunction in NPCs by regulating the Nrf2/HO-1/NF-kb signaling, indicating its potential as a promising therapeutic agent against IVDD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.