Abstract

This study investigated the effects of solution chemistry and growth conditions on bacterial deposition on spinach leaf surfaces using a parallel plate flow cell. Two food safety pathogens of concern and two non-pathogen bacterial surrogates (environmental E. coli isolates) were grown in ideal (LB media) and nutrient-restricted (M9 media) conditions. Bacterial attachment was quantified as mass transfer rate coefficients for cells suspended in 10 mM KCl, CaCl2 and artificial groundwater, and cell and leaf surfaces were extensively characterized (zeta potential, hydrophobicity, extracellular polymer (EPS) composition). Between the pathogens, E. coli O157:H7 attachment was greater than that of Salmonella Typhimurium, attributed to measurable variability in cell surface charge and hydrophobicity. When grown in M9 media, both pathogens were significantly more adhesive to spinach surfaces (p < 0.01) than when grown in LB media. Surrogates did not follow this trend and showed minimal changes in adhesion kinetics and surface properties between growth conditions. EPS sugar/protein ratios were reduced in some of the highest attachment scenarios, suggesting that changes in EPS composition in favor of proteins may play a role. These results show the importance of growth conditions and solution complexities in understanding mechanisms of aqueous bacterial adhesion to food surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call