Abstract

We investigated the permeability changes that occur in the human brain microvascular endothelial cell (HBMEC) monolayer, an in vitro model of the blood-brain barrier, during Escherichia coli K1 infection. An increase in permeability of HBMECs and a decrease in transendothelial electrical resistance were observed. These permeability changes occurred only when HBMECs were infected with E. coli expressing outer membrane protein A (OmpA) and preceded the traversal of bacteria across the monolayer. Activated protein kinase C (PKC)-alpha interacts with vascular-endothelial cadherins (VECs) at the tight junctions of HBMECs, resulting in the dissociation of beta-catenins from VECs and leading to the increased permeability of the HBMEC monolayer. Overexpression of a dominant negative form of PKC-alpha in HBMECs blocked the E. coli-induced increase in permeability of HBMECs. Anti-OmpA and anti-OmpA receptor antibodies exerted inhibition of E. coli-induced permeability of HBMEC monolayers. This inhibition was the result of the absence of PKC-alpha activation in HBMECs treated with the antibodies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call