Abstract

Eschericha coli cells, which contain apo-glucose dehydrogenase, were used in constructing a mediated amperometric glucose sensor. The E. coli modified glucose sensor, which was prepared by immobilizing E. coli cells behind a dialysis membrane on a carbon paste electrode containing 2,3-dimethoxy-5-methyl-1,4-benzoquinone (Q 0), produced a current for the electrocatalytic oxidation of glucose with Q 0 as an electron transfer mediator only after the addition of a trace amount of pyrroloquinoline quinone (PQQ), the cofactor of the enzyme. This allows a novel method of glucose measurements free from the interference of the redox active substances, if contained, in a sample solution. The glucose sensor was insensitive to dioxygen; the currents measured under anaerobic and aerobic conditions, and even under dioxygen saturated conditions were almost the same in magnitude at a given concentration of glucose over the range of 0.2–10 mM. Response time of the glucose sensor was 2 min to attain 90% level of the steady-state current. The E. coli modified glucose sensor was reusable when treated with ethylenediaminetetraacetic acid (EDTA). When E. coli cells were lyophilized, they could be stored at room temperature in a dry box for more than six months without loss of the catalytic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call