Abstract

Our previous work had found that telomerase rejuvenated in the cytoplasm of corneal epithelial cells cultured in embryonic stem cell-conditioned medium, the functional properties of stem-like corneal epithelial cells can be enhanced by co-culturing with embryonic stem cells (ESCs) via activation of the integrinβ1-FAK-PI3K/Akt signaling pathway. The goal of this study was to explore the potential molecular mechanisms of the ES micro-environment that enhance the stem cell-like phenotype and inhibit apoptosis in human limbal stem cells (LSC). The LSC were cultured in different media, either CnT-20 medium or CnT-20 +20% ES culture supernatant (ESC-CM). We observed that LSC cultured in ESC-CM had an increased proliferative capacity, greater serial passage capacity, higher colony-forming efficiency (CFE) and higher levels of stem cell-associated marker than those cultured in CnT-20. Compared with CnT-20, ESC-CM enhanced the undifferentiated status and inhibited apoptosis in the LSC by promoting the maintenance of telomerase activity, which could reduce the generation of reactive oxygen species (ROS), maintain the membrane potential (Δψm) at higher levels and reduce the expression of the p21 protein. Our findings indicated that ESC-CM system induced LSC to maintain a stem cell phenotype and inhibit the process of apoptosis. These effects might partially be achieved via the telomerase-p21-mitochondrial axis and the activation of the FAK/Wnt signaling pathways. This study may have high impact and clinic implication on the expansion of LSC in regenerative medicine, especially for ocular surface reconstruction.

Highlights

  • Adult stem cells are small subpopulations of slow-cycling undifferentiated resident cells with high proliferative capacity and self-renew ability, as well as pluripotent potential

  • We observed that telomerase rejuvenated in the cytoplasm of corneal epithelial cells cultured in ESC-CM system and the functional properties of stem-like corneal epithelial cells could be enhanced by co-culturing with embryonic stem cells via activation of the integrinb1- FAK- Akt signaling pathway [10]

  • ESC-CM and CnT-20 media were capable of supporting primary limbal stem cells (LSC) growth

Read more

Summary

Introduction

Adult stem cells are small subpopulations of slow-cycling undifferentiated resident cells with high proliferative capacity and self-renew ability, as well as pluripotent potential. These exhibit unique characteristics, including relatively undifferentiated, both ultrastructurally and biochemically; high capacity for longterm, error-free self-renewal; high proliferative potential; cycling slowly or rarely in vivo; stimulated to proliferate in response to injury and certain growth stimuli. We endeavored to explore the potential roles of telomerase and FAK/Wnt signaling pathways in maintenance the functional properties of LSC in ESC-CM system, which may serve as a representative mode of tissue-specific adult stem cells

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call