Abstract

Shearography is a modern optical interferometric measurement technique. It uses the interferometric properties of coherent laser light to measure deformation gradients on the µm m − 1 level. In the most common shearography setups, the ones employing a Michelson interferometer, the deformation gradients in both the x- and y-directions can be identified by setting angles on the shearing mirror. One of the mechanisms for setting the desired shearing angles in the Michelson interferometer is using the PZT actuators. This paper will reveal that the time-dependent creep behaviour of the PZT actuators is a major source of measurement errors. Measurements at long time spans suffer severely from this creep behaviour. Even for short time spans, which are typical for shearographic experiments, the creep behaviour of the PZT shear actuator induces considerable deviation in the measured response. In this paper the mechanism and the effect of PZT creep is explored and demonstrated with measurements. For long time-span measurements in shearography, noise is a limiting factor. Thus, the time-dependent evolution of noise is considered in this paper, with particular interest in the influence of external vibrations. Measurements with and without external vibration isolation are conducted and the difference between the two setups is analyzed. At the end of the paper some recommendations are given for minimizing and correcting the here-studied time-dependent effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call