Abstract

Energy-efficiency optimization occupies an important position in the Internet of Things application. The error-resilience technique has begun to emerge and brought the performance and energy benefits as a new vision for alternative computing, because it eliminates the overconstrained margin in current processor design flow and protects the system from process, supply voltage, temperature, and aging variations through an error-resilient mechanism rather than expensive guardbands. However, as a traditional clock-tree power optimization technique, the clock gating mechanism cannot work in such a system when it faces the timing violation problem. In this paper, we propose an error-resilient integrated clock gate (ERICG) and its automatic integration methodology in error detection and correction (EDAC) system design flow. ERICG can provide the ability of in situ timing EDAC with only four additional transistors compared with a conventional integrated clock gate. The SPICE simulation shows that it is a metastable-hardened cell and can work well in the wide voltage operation (0.5~ 1.1 V) including the near-threshold region. We implement it in a commercial C-SKY CK802 processor based on an SMIC 40-nm technology. The result shows that it improves the energy efficiency by 68% compared with the non-EDAC design and lowers the total power by 28.72% over the conventional EDAC design at 0.6 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call