Abstract

Mathematical derivation of error (noise) propagation in eigenimage filtering is presented. Based on the mathematical expressions, a method for decreasing the propagated noise given a sequence of images is suggested. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the final composite image are compared to the SNRs and CNRs of the images in the sequence. The consistency of the assumptions and accuracy of the mathematical expressions are investigated using sequences of simulated and real magnetic resonance (MR) images of an agarose phantom and a human brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.