Abstract

Several approaches for the evaluation of upper and lower bounds on error probability of asynchronous spread spectrum multiple access communication systems are presented. These bounds are obtained by utilizing an isomorphism theorem in the theory of moment spaces. From this theorem, we generate closed, compact, and convex bodies, where one of the coordinates represents error probability, while the other coordinate represents a generalized moment of the multiple access interference random variable. Derivations for the second moment, fourth moment, single exponential moment, and multiple exponential moment are given in terms of the partial cross correlations of the codes used in the system. Error bounds based on the use of these moments are obtained. By using a sufficient number of terms in the multiple exponential moment, upper and lower error bounds can be made arbitrarily tight. In that case, the error probability equals the multiple exponential moment of the multiple access interference random variable. An example using partial cross correlations based on codes generated from Gold's method is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.