Abstract

We analyze the convergence of a numerical scheme for a class of degenerate parabolic problems modelling reactions in porous media, and involving a nonlinear, possibly vanishing diffusion. The scheme involves the Kirchhoff transformation of the regularized nonlinearity, as well as an Euler implicit time stepping and triangle based finite volumes. We prove the convergence of the approach by giving error estimates in terms of the discretization and regularization parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.