Abstract

Error estimates are obtained for finite element approximations of the drag and the lift of a body immersed in nonstationary Navier-Stokes flows. By virtue of a consistent flux technique, the error estimates are reduced to those of the velocity as well as its first order derivatives and the pressure. Semi-implicit backward Euler method is used for the time integration and no stability condition is required. The error estimate in a square summation norm is optimal in the sense that it has the same order as the fundamental error estimate of the velocity. The error estimate in the supremum norm is not optimal in general but it is so for some finite elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.