Abstract

The implicit locally one-dimensional finite-difference time-domain (LOD-FDTD) method is useful for designing plasmonic devices and waveguide structures. By using a large timestep size, the implicit LOD-FDTD method can reduce the computational time; however, this involves a trade-off with accuracy. To overcome this trade-off, we propose an error-controllable scheme for the LOD-FDTD method, wherein the fast inverse Laplace transform is employed to generate the electromagnetic field in arbitrary time domain from that in complex frequency domain. Compared to the conventional LOD-FDTD method, our scheme provides higher accuracy with more efficient calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call