Abstract

We discuss the use of a posteriori error estimates for high-order finite element methods during simulation of the flow of incompressible viscous fluids. The correlation between the error estimator and actual error is used as a criterion for the error analysis efficiency. We show how to use the error estimator for mesh optimization which improves computational efficiency for both steady-state and unsteady flows. The method is applied to two-dimensional problems with known analytical solutions (Jeffrey-Hamel flow) and more complex flows around a body, both in a channel and in an open domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.