Abstract
In this article, two types of fractional local error bounds for quadratic complementarity problems are established, one is based on the natural residual function and the other on the standard violation measure of the polynomial equalities and inequalities. These fractional local error bounds are given with explicit exponents. A fractional local error bound with an explicit exponent via the natural residual function is new in the tensor/polynomial complementarity problems literature. The other fractional local error bounds take into account the sparsity structures, from both the algebraic and the geometric perspectives, of the third-order tensor in a quadratic complementarity problem. They also have explicit exponents, which improve the literature significantly.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have