Abstract

A computational error analysis is applied to the large-eddy simulation of the turbulent non-premixed Sydney bluff-body flame, where the error is defined with respect to experimental data. The error-landscape approach is extended to heterogeneous compressible turbulence, which is coupled to combustion as described by a flamelet model. The Smagorinsky model formulation is used to model the unknown turbulent stresses. We introduce several measures to quantify the total simulation error and observe a striking ‘valley-structure’ in the error that arises as function of the spatial resolution and the Smagorinsky length parameter. The optimal refinement strategy that can be extracted from this error-landscape is reminiscent of that for non-reacting turbulent flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.