Abstract

We propose and analyze a semi-discrete and a fully discrete mixed finite element method for the Cahn-Hilliard equation ut + Δ(ɛΔu−ɛ−1f(u)) = 0, where ɛ > 0 is a small parameter. Error estimates which are quasi-optimal order in time and optimal order in space are shown for the proposed methods under minimum regularity assumptions on the initial data and the domain. In particular, it is shown that all error bounds depend on ** only in some lower polynomial order for small ɛ. The cruxes of our analysis are to establish stability estimates for the discrete solutions, to use a spectrum estimate result of Alikakos and Fusco [2], and Chen [15] to prove a discrete counterpart of it for a linearized Cahn-Hilliard operator to handle the nonlinear term on a stretched time grid. The ideas and techniques developed in this paper also enable us to prove convergence of the fully discrete finite element solution to the solution of the Hele-Shaw (Mullins-Sekerka) problem as ɛ → 0 in [29].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.