Abstract

In this paper we study the fully discrete mixed finite element methods for quadratic convex optimal control problem governed by semilinear parabolic equations. The space discretization of the state variable is done using usual mixed finite elements, whereas the time discretization is based on difference methods. The state and the co-state are approximated by the lowest order Raviart–Thomas mixed finite element spaces and the control is approximated by piecewise constant elements. By applying some error estimates techniques of mixed finite element methods, we derive a priori error estimates both for the coupled state and the control approximation. Finally, we present a numerical example which confirms our theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.