Abstract

Development of new biometric algorithms is parallel to advances in technology of sensing devices. Some of the limitations of the current face recognition systems may be eliminated by integrating 3D sensors into these systems. Depth sensing devices can capture a spatial structure of the face in addition to the texture and color. This kind of data is yet usually very voluminous and requires large amount of computer resources for being processed (face scans obtained with typical depth cameras contain more than 150 000 points per face). That is why defining efficient data structures for processing spatial images is crucial for further development of 3D face recognition methods. The concept described in this work fulfills the aforementioned demands. Modification of the quad-tree structure was chosen because it can be easily transformed into less dimensional data structures and maintains spatial relations between data points. We are able to interpret data stored in the tree as a pyramid of features which allow us to analyze face images using coarse-to-fine strategy, often exploited in biometric recognition systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.