Abstract

In a two-dimensional domain Ω ⊂ R 2, we consider the wave equation with variable velocity c(x 1, x 2) degenerating on the boundary Γ = ∂Ω as the square root of the distance to the boundary, and construct an asymptotic solution of the Cauchy problem with localized initial data. This problem is related to the so-called “run-up problem” in tsunami wave theory. One main idea (also used by the authors in earlier papers in the one-dimensional case and the two-dimensional case with c 2(x 1, x 2) = x 1) is that the (singular) curve Γ is a caustic of special type. We use this idea to introduce a generalization of the Maslov canonical operator covering the problem with degeneration and obtain efficient formulas for the asymptotic solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.