Abstract
The Cauchy problem with localized initial data for the linearized Korteweg–de Vries equation is considered. In the case of constant coefficients, exact solutions for the initial function in the form of the Gaussian exponential are constructed. For a fairly arbitrary localized initial function, an asymptotic (with respect to the small localization parameter) solution is constructed as the combination of the Airy function and its derivative. In the limit as the parameter tends to zero, this solution becomes the exactGreen function for the Cauchy problem. Such an asymptotics is also applicable to the case of a discontinuous initial function. For an equation with variable coefficients, the asymptotic solution in a neighborhood of focal points is expressed using special functions. The leading front of the wave and its asymptotics are constructed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.