Abstract
Using a diagrammatic scheme, we study the acoustoelectric effects in two-dimensional (2D) hexagonal Dirac materials due to the sound-induced pseudo-gauge field. We analyze both uniform and {\em spatially dispersive} currents in response to copropagating and counterpropagating sound waves, respectively. In addition to the longitudinal acoustoelectric current, we obtain an exotic {\em transverse} charge current flowing perpendicular to the sound propagation direction owing to the interplay of transverse and longitudinal gauge field components $j_T\propto A_L A^\ast_T$. In contrast to the almost isotropic directional profile of the longitudinal uniform current, a highly anisotropic transverse component $j_T\sim\sin(6\theta)$ is achieved that stems from the inherited three-fold symmetry of the hexagonal lattice. However, both longitudinal and transverse parts of the dispersive current are predicted to be strongly anisotropic $\sim\sin^2(3\theta)$ or $\cos^2(3\theta)$. We quantitatively estimate the pseudogauge field contribution to the acoustoelectric current that can be probed in future experiments in graphene and other 2D hexagonal Dirac materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.