Abstract

This paper derives the total power or energy loss rate generated in the form of gravitational waves by an inspiralling compact binary system to the five halves post-Newtonian (2.5PN) approximation of general relativity. Extending a recently developed gravitational-wave generation formalism valid for arbitrary (slowly-moving) systems, we compute the mass multipole moments of the system and the relevant tails present in the wave zone to 2.5PN order. In the case of two point-masses moving on a quasi-circular orbit, we find that the 2.5PN contribution in the energy loss rate is entirely due to tails. Relying on an energy balance argument we derive the laws of variation of the instantaneous frequency and phase of the binary. The 2.5PN order in the accumulated phase is significantly large, being grossly of the same order of magnitude as the previous 2PN order, but opposite in sign. However finite mass effects at 2.5PN order are small. The results of this paper should be useful when analyzing the data from inspiralling compact binaries in future gravitational-wave detectors like VIRGO and LIGO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.